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Abstract

Acute gastroenteritis is one of the main causes of mortality in humans and young animals.

Domestic and mainly wild animals such as bats, small rodents and birds are highly diversi-

fied animals in relation to their habitats and ecological niches and are widely distributed geo-

graphically in environments of forest fragmentation in some areas of the Amazon, being

considered important sources for viruses that affect humans and other animals. Due to the

anthropical activities, these animals changed their natural habitat and adapted to urbanized

environments, thus representing risks to human and animal health. Although the knowledge

of the global diversity of enteric viruses is scarce, there are reports demonstrating the detec-

tion of rotavirus in domestic animals and animals of productive systems, such as bovines

and pigs. The present study investigated the prevalence of Rotavirus A in 648 fecal samples

of different animal species from the northeastern mesoregion of the state of Pará, Brazil,

which is characterized as an urbanized area with forest fragments. The fecal specimens

were collected from October 2014 to April 2016 and subjected to a Qualitative Real-Time

Polymerase Chain Reaction (RT-qPCR), using the NSP3 gene as a target. It was observed

that 27.5% (178/648) of the samples presented positive results for RVA, with 178 samples

distributed in birds (23.6%), canines (21.35%), chiropterans (17.98%), bovines (14.6%),

horses (8.43%), small rodents (6.74%), pigs (3.93%) and felines (3.37%), demonstrating

the circulation of RVA in domestic animals and suggesting that such proximity could cause

transmissions between different species and the occurrence of rearrangements in the

genome of RVA as already described in the literature, associated to the traces of environ-

mental degradation in the studied areas.
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Introduction

Emerging and reemerging infectious diseases are increasing each year in several countries,

with an impact both on human populations and on domestic and wild animals living in areas

with considerable forest remnants [1]. Most of these diseases are of viral origin, suggesting the

emergence and reemergence of viruses that are triggered by human activities that modify the

environment [2].

The populations of wild animals that inhabit forest fragments are strategic groups for stud-

ies of public health and the transmission of zoonosis, given that they act as indicators in the

assistance and intervention in the human populations, aiming at the prevention of outbreaks

and epidemics [3].

Acute gastroenteritis can be caused by infection in the gastrointestinal tract, caused by dif-

ferent infectious or parasite agents [4–7]. They represent one of the main causes of mortality

in humans, and in young animals, counting for about 25% of mortality [8]. Rotavirus is widely

distributed in animals, which act as sources of rotavirus emergent strains, with these animals

acting in the transmission between species and through reassortment leading to the emergence

of new strains which have been reported in human infections [9–12].

The rotavirus (RV) belongs to the Reoviridae family and comprises nine species known as

Rotavirus group A to I, with a recent proposal of the J species [13, 14]. Rotavirus A (RVA) is

widespread worldwide and predominantly infects humans, bovines and other mammal spe-

cies, as well as birds [15]. They have a double-stranded ribonucleic acid (dsRNA) genome,

divided into 11 segments coding for structural proteins (VP1-VP4, VP6 and VP7) and non-

structural (NSP1-NSP5/NSP6) proteins [16, 17].

There are records of a close relationship between Amazonian wildlife and human popula-

tions [18], and this interaction is the effect of anthropogenic urbanization activities that result

in the deforestation of forest areas, causing the degradation of previously isolated sites such as

caves and small caves, a continuous and nature progressive process that has led not only to

changes in wildlife habitats but also to a greater relationship with human populations in rural

and urban environments, contributing to the occurrence and emergence of diseases different

from what normally occurs in endemic regions [19–22].

Although the results of RVA have already been described globally [12, 23–30], in Brazil, the

occurrence, diversity and role of rotavirus in these animals are still poorly studied, considering

the large number of present species [4, 31–34].

In the Brazilian Amazon, especially in the state of Pará, the city of Belém and Northeast

metropolitan mesoregions are some of the areas with the highest indexes of environmental

changes [35], which are concentrated, along with the fact that the knowledge of the global

diversity of enteric virus in animals is scarce [36].

Therefore, it is important to monitor the health of domestic and wild animals in their natu-

ral habitat, especially in areas with anthropic alterations that have an interface with rural com-

munities and enterprises, in order to investigate the occurrence of RVA in this population.

These communities are ecologically complex, because they have multiple hosts and endless

pathogens that may eventually circulate in contiguous urban centers, in addition to the fact

that it should also be considered that there is still a lack of studies showing the significance of

these viruses infecting this population, as in the context of epidemiological surveillance, these

animals become important, since they can be considered as natural sources, with the possibil-

ity of transmission to humans [37–39].

The qualitative real-time polymerase chain reaction (qRT-PCR) used the NSP3 gene and

the TaqMan probe from a highly conserved region of the rotavirus non-structural protein 3

(NSP3), which was previously used in samples from human origin and with low viral loads
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according to studies conducted by Zeng et al. [40] and Mijatovic et al. [41]. In the present

study, this assay was adopted as a screening test for the detection of RV in asymptomatic ani-

mal populations.

Therefore, the objective of the present study was to estimate the number of animals infected

by RVA in the forest environment and the possible environmental impacts, and the geographi-

cal distribution of this agent in the region.

Material and methods

Study area

The study area included the settlements of Expedito Ribeiro (Santa Bárbara do Pará), Vila

Ananin (Peixe-Boi) and Açaiteua-Centro Alegre (Viseu), located in areas with environmental

degradation in the state of Pará, in the Brazilian Amazon. According to Alvares et al. [42], the

city of Santa Bárbara do Pará presents a tropical type of motion-type Am and Viseu presents

atype of motion, with dry seasons in summer and winter-Am, As and Aw (Fig 1), taking into

account the weather forecast classification of Köppen-Geiger.

The collection points of the positive samples were georeferenced and the data were trans-

ported to the ArcGIS 10.3 program for the construction of distribution maps for the RVA at

the interface between agroecosystems and natural ecosystems.

Data extraction and geoprocessing analysis

Precipitation data were obtained from The Brazilian National Institute of Meteorology (Inmet -

http://www.inmet.gov.br/) for the years of capture in the Expedito Ribeiro Settlement (2014)

and Açailândia (2015) of the Data Collection Platforms (PCDs) of Belém, located 50 km from

Santa Bárbara do Pará, and Tracuateua, located 50 km from Peixe-Boi and 100 km from Viseu.

Garmin GPSMap 64s Global Positioning System (GPS) coordinates were collected in the field.

The municipal boundaries were obtained on the website of the Brazilian Institute of Geog-

raphy and Statistics (IBGE) (http://www.ibge.gov.br/) and data on deforestation and land use

were obtained from the PRODES [43] and TerraClass [44] Projects. PRODES has annual data

in digital format since 2000 and TerraClass presents biannual data since 2004.

The satellite image was generated using the sensor Sentinel 2 of the European Space Agency

(ESA) (https://sentinel.esa.int/ web/sentinel/user-guides/sentinel-2-msi) with Open Access

CC-BY License (http://open.esa.int/) from the years of 2017 and 2018.

All the data obtained was stored in a Geographic Database (BDG). The BDG was imported/

stored in a GIS for the editing of the graphic elements, establishment of topological relations

between the elements and their respective attributes, spatial analysis and visualization of the

result through thematic maps.

Choice of study areas

For the present study, forest fragments of similar size, shape and Phyto physiology were cho-

sen, considering an open peri urban matrix with similar soil use. The selected fragments were

distributed within the mesoregions studied, and in each selected fragment fecal samples were

randomly collected from domestic and wild animals [45].

Soil use classes were obtained from the TerraClass data mosaic from 2004 to 2016, because

the study sites were in an area with a high cloud presence, which prevented observation (the

area was not observed).

The data processing, interpretation, visualization and spatial analysis were performed in

ArcGIS software (http://www.arcgis.com/).
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For the analysis of data related to the determination of the richness, composition and abun-

dance of the fauna of the animals studied in the study area, considering the collection methods

adopted and the species available in each city, each sample was considered as an independent

sample.

Statistical analysis

The richness of wild fauna and domestic animals was determined by the total number of spe-

cies including all collection methods, and the similarity of species was made by the chi-square

analysis between the samples of the different treatments with the aid of the EstimateS 8.0 soft-

ware [46].

For the calculation of the Test T, the Statistica software was used, and the indices of infected

animals in the two environments (forest fragment and peridomicile) were calculated for each

treatment sampled by collection area, using the software Past 1.92. Aiming at comparing the

values of the diversity indexes through the paired test, as well as the descriptive analysis of the

anthropic effects [47].

Fig 1. Place of study and capture of the animals.

https://doi.org/10.1371/journal.pone.0209005.g001
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The data obtained for the occurrence of RVA and the questionnaires was inserted into a

database for a descriptive analysis of the epidemiological profile of the animal population in

the three forest ecosystems studied. In this analysis, descriptive statistical treatments were car-

ried out, using customized "row-columns" type charts, referring to the data, in order to charac-

terize the sample and quantify the results using absolute frequency values using the chi-square

test and the Test T.

Ethical aspects

Population study, collection of clinical specimens and laboratory methodology. The

flying animals (wild birds and chiroptera) were captured using mist nets which were opened at

dawn (4:00 a.m.) and closed in the morning (9:00 a.m.) and were inspected every one hour

until the closing, with a sampling effort of 15 days. This research was approved by National

Council for Animal Control and Experimentation (CONCEA), System of Authorization and

Information in Biodiversity—SISBIO/ICMBIO/Ministry of the Environment under No.

37174–1 and by Committee on Ethics in Animal Use (CEUA / IEC) No. 019/2014.

All procedures with animals were performed by veterinarians, being birds and bats identi-

fied and released at the same capture site. The fecal specimens were collected by stimulation of

the rectal ampulla with the use of a "Zaragatoa", packed in cryogenic vials, identified, stored in

liquid nitrogen, and later sent to the Laboratory.

Wild animals (small non-flying mammals) were trapped within live-containment traps of the

Tomahawk cage (size 45x16x16cm) and Sherman type aluminum (size 30x9x8cm). In each sam-

ple plot, 61 traps were distributed, 20 Shermans and 41 Tomahawks being baited with a mixture

made with peanut paste, sardines, cod liver oil and corn meal, as well as fruit like banana, apple

and pineapple. All the traps used were inspected daily in the morning, the baits being exchanged

when necessary and later after the capture in bags of cloth and at least five specimens of each spe-

cies were chosen for the collection of biological material. The wild animals were sedated with a

combination of ketamine 20mg/kg and xylazine 2mg/kg intramuscularly and subsequently, eutha-

nized with anesthetic overdose of 2% lidocaine in the foramen magnum, according to the recom-

mendation of the National Council for the Control of Animal Experimentation (CONCEA).

From October 2014 to April 2016, 1,282 fecal samples were collected from wild and domes-

tic animals. Amongthese, 648 (50.5%) samples were randomly selected for RVA research and

handled in Level Three Biosafety Laboratory (NB3).

The viral genome was extracted using the TRIZOL LS REAGENT protocol (INVITRO-

GEN, USA/KIT QIAGEN), following the manufacturer’s recommendations, with minor adap-

tation according to the protocol described in the supplemental data.

The qRT-PCR was conducted according to Zeng et al. [40] for the detection of RVA using

the NSP3 segment of RVA as the target gene sequence. The assay was conducted in a mixture

containing: RNAse-free H2O, TaqMan RT-PCR Mix (2x), TAqMan RT Enzyme Mix (40x),

primers for the NSP3 gene, Primer NSP3 Forward (20mM), Primer NSP3 Reverse (20mM),

probe NSP3 S (10nm), Template (RNA) 3μL, having a total reaction volume of 17μL and

reverse transcription cycling of 50˚C, 30 minutes, denaturation of 95˚C, 10 minutes, annealing

of 45 cycles of 95˚C, 15 seconds and extension of 60˚C, 1 minute.

The analyzes were considered positive when presenting the cycle threshold (CT)� 40. In

order to guarantee a reliable test result, the measurements of contamination control were per-

formed with the use of positive animal control (SA11 prototype) and a negative control (ultra-

pure water).

All RVA-positive samples were subjected to reverse transcription-polymerase chain reac-

tion (RT-PCR) according to Mijatovic et al [41] to genotyping low viral loads samples. First
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round was performed with consensus primers N-VP4F1/N-VP4R1 and the Nested-PCR was

conducted with N-VP4F2/N-VP4R2 primers to amplify VP4 gene. Amplicons were purified

and sequencing for VP4 gene using the same primers of Nested-PCR. The sequences were col-

lected from an automated ABI Prism 3130xl DNA sequencer (Applied Biosystems). The

sequence fragments were assembled and edited using the Geneious Bioinformatics software

platform v.8.1.7. Posteriorly, the data were compared with othersequences from the National

Center for Biotechnology Information GenBank database using BLAST alignment tool to elu-

cidate the RVA genotype of the samples.

Results

From October 2014 to April 2016, a total of 648 fecal samples of wild and domestic animals

belonging to three forest fragments areas were tested for the NSP3 gene by qualitative qPCR,

and 178 (27.5%) were positive for RVA, distributed among the species: birds (23.6%), canines

(21.35%), bats (17.98%), cattle (14.6%), horses (8.43%), small rodents (6.74%), swine (3.93%)

and felines (3.37%). The CT interval ranged from 28.47 to 39.9 (mean of 36.79) with the fol-

lowing mean values per species: horses (34.11), birds (34.24), cattle (36.02), canines and chi-

ropterans (37.1), rodents (37.76), swine (37.91) and felines (38.36).

It was possible to detect viral strains in all genders of animals studied and in the harvesting

period none of the animals showed signs of acute infection and / or diarrhea.

Rotavirus A (RVA) detected in the present study of wild and domestic animals belonging to

the three areas of forest fragment, according to Fig 2.

In relation to the evaluated bovines, only in the city of Viseu, these species were studied

because they were created extensively. In addition, most of the animals were young with ages

varying from 1 day to 8 yearsold, history of deficient vaccination, lack of technical assistance

and raised in the form of subsistence. The animals showed no symptoms of diarrhea, only low

weight performance and poor sanitary management status. In relation to chiroptera, 32

(17.98%) positive samples for RVA were distributed among Carollia perspicillata species, with

12 (37.5%) being all adults, 9 (28.12%) Desmodus rotundus samples (4 young and 5 adults), 5

(15.6%) of Uroderma bilobata (15.62%), 3 (9.37%) of Artibeus lituratus and the species Arti-
beus Planirostus, Diaemus iyoug and Glossophagine with 1 (3.12%) each. These animals came

from areas of forest fragments located near bovine and equine farms, in addition to inhabiting

small chicken farms.

Fig 3 shows the results obtained for all the species of animals investigated in the forest frag-

ment as well as in the peridomicillus area.

The anthropic variables were analyzed for the three cities studied, as well as the use of the

soil within the range of the animals, obeying the domicile, the peridomicile and the forest frag-

ment where the traps of small rodents, birds and various species of animals were captured (Fig

4 and Fig 5).

Considering the factors related to the anthropic activities in the three studied areas within the

three cities of the present study, it was observed that the city of Santa Bárbara is the one that has a

better area of preserved forest and the city of Viseu a smaller area. However, in the city of Santa

Bárbara, a greater concentration of occupations was observed around the area of forest fragment.

It was observed in this chosen area of the city, the presence of different families living in a rural

settlement, surviving from the exploitation of forest resources and the creation of small animals

for subsistence, such as poultry and fish farming, as well as family farming products.

The breeding of animals in native pastures was only observed in the cities of Peixe Boi and

Viseu. Extensive livestock farming was practiced with beef cattle, equines for work and small

animals (swine and goats). In relation to the most preserved pasture area, the city of Peixe Boi
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had the largest area, according to the data shown in Fig 5, however, in the city of Viseu, a

higher regeneration was observed in the pastures during the period of the study, with signifi-

cant secondary vegetation.

When comparing the climates of the three areas it was observed that the predominant cli-

mate is megathermal and humid with average annual temperature around 27˚C. The months

of October, November and December are the hottest, with temperatures between 32˚C and

34˚C and absolute maximums around 41˚C. Annual rainfall is quite high, generally around

2,350 mm, but strongly concentrated from January to June (80%). From September to Decem-

ber, on the contrary, rainfall is rare, about 7%, with a short dry season, of moderate water defi-

cit in those months. The relative humidity of the average air oscillates around 85%, as shown

in Fig 6 [48].

The description of the accumulated precipitation in the year of capture of the fecal speci-

mens compared to the Climatological Normals (CLINO) for the period from 1961–1990 of the

PCDs closest to the locations of the Expedito Ribeiro / Santa Bárbara settlement (Belém PCD),

Vila Ananim / Peixe-Boi and Açaiteua / Viseu (Tracauateua PCD) show the frequency of rain-

fall in the regions, which facilitates the renewal of the pastures and the regeneration of the

impacted forests, being an important indicator of the reduction of the damages caused by

deforestation in the region.

Fig 2. Frequency of Rotavirus A in domestic and wild animals in the Brazilian Amazon from 2014 to 2016.

https://doi.org/10.1371/journal.pone.0209005.g002
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The average deforestation index in the three study areas was calculated from data obtained

from INPE information systems. It was observed that in the years of 2013 to 2014 there were

no changes in these regions; in the period from 2014 to 2015 about 4.1% of the city of Viseu

was changed and 1.6% of the city of Peixe Boi. In relation to the period of 2016, great changes

were observed in Peixe Boi (79%) and in the city of Viseu (70%), thus demonstrating that

changes in the natural ecosystem may be associated with the frequencies for RVA in the stud-

ied areas, according to Fig 7.

When assessing the infected animals in relation to the uninfected animals in both the forest

fragment and the peridomicile, considering as animals of the forest fragment the birds, the

chiroptera and the small rodents and as animals of the peridomicile the canines, bovines, pigs,

felines and horses, a percentage of 37.07% infected peri domestic animals (86/232) and 22.12%

infected forest fragment animals (92/416) were obtained. Applying the selected statistical anal-

ysis, a Pearson x2 Chi-square value was obtained: 16.7159, df = 1 and p<0.001, meaning that

the hypothesis was corroborated, that is, the greater the degradation of the environment, the

more likely it will be the search for food by wild animals in adjacent areas, or in the edge of the

Fig 3. Frequency of Rotavirus A in domestic and wild animals in the Brazilian Amazon from 2014 to 2016.

https://doi.org/10.1371/journal.pone.0209005.g003
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forest or even in the peri domiciliary region. In this sense, the possibility of contagion with

other species of animals, even humans, should be considered because of the capacity of the

rotavirus to be transmitted via the fecal / oral route or through direct contact with the environ-

ment. It is important to point out that the animals detected in this study are important sources

of viral strains.

A total of 80 stool samples were selected, reextracted and analyzed using PCR for the VP4

gene. Eight strains (10%) were positive for VP4 gene, being 2 strains bellowed to P[6] genotype

and 6 to P[4]-type, according to Fig 8.

Fig 4. Map of distance of 3 km at the capture sites of the bats in (A) Santa Bárbara, (B) Viseu and (C) Peixe-Boi, with land use classes.

https://doi.org/10.1371/journal.pone.0209005.g004
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Discussion

In the present study, RVA was detected circulating in 27.5% of the animals; 36% in domestic

animals and 64% in wild animals, providing a unique dataset with qRT-PCR detecting a low

viral load of RVA in different species, which further correlates with the deforestation index.

These data are important because there is a lack of tests for RVA diagnosis in animals, since

the current methods of RVA detection does not always detect in these populations [8]. With

the advent of real-time PCR (qPCR), there was an exponential growth, compared to conven-

tional PCR essays, since its superior accuracy, sensitivity and specificity is remarkable, and it is

Fig 5. Shows the percentage of each class of soil use within a 3 km radius of the place of capture of the animals in

each city studied.

https://doi.org/10.1371/journal.pone.0209005.g005

Fig 6. Accumulated precipitation of month X precipitation (CLINO 1961–1990) of the Belém (A) and Tracauateua

(B) PCDs.

https://doi.org/10.1371/journal.pone.0209005.g006
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Fig 7. Positivity to RVA correlated with deforestation in the three cities of the Brazilian Amazon. Source: PRODES (http://www.dpi.inpe.br/prodesdigital/

prodesmunicipal.php).

https://doi.org/10.1371/journal.pone.0209005.g007

Fig 8. Results of nested and qRT-PCR for samples characterized in accordance to the host and localization.

https://doi.org/10.1371/journal.pone.0209005.g008
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possible to detect RVA in a variety of animal species using NSP3 gene [49]. The sensitivity of

RT-qPCR significantly improved the rate of RVA detection in clinical samples from animals

and in this context, the present study proposed an interesting study metrics using virus spread-

ing in the wild animals which inhabit forest fragments to indicate human population interven-

tions, with the goal of preventing the virus outbreaks leveraged on the unique geographic

characteristics of Brazil and its large number of species in Amazon.

Currently, no data have been described in the literature regarding the RVA detection using

real-time qPCR technique in a wide variety of wild animal species. However, a study by Soltan

et al. [50] conducted with horses and cattle detected RVA by RT-PCR, commercial RT-PCR

and RT-qPCR in 36.7%, 51.4% and 56.9% respectively, differently from the present study that

showed higher positivity for chiropterans (17.98%), canines (21.35%), birds (23.6%) and cattle

(14.6%).

The first description of RVA in chiroptera was recorded in feces of Eidolon helvum caught

in Vihiga, Kenya [51]. Afterwards, several strains of RVA were detected by different molecular

techniques involving chiroptera, in several countries, including Kenya (E. helvum), China

(Rhinolophus hipposideros and Aselliscus stoliczkanus), France (Myotis mystacinus), Cameroon

(E. helvum) and Brazil [31, 51–55]. The present study shows the occurrence of RVA in 17.98%

of the chiroptera, being among the species Carollia perspicillata (37.5%), Desmodus rotundus
(28.12%), Uroderma bilobata (15.6%), Artibeus lituratus (9.37%), Artibeus Planirostus (3.12%),

Diaemus iyoug and Glossophagine (3.12%).

Barquez et al. [56] reported that Desmodus rotundus is one of the three hematophagous spe-

cies of the Phyllostomidae family, found throughout South America, Central America and

Mexico. Of the positive chiroptera for RVA in the present study, a prevalence of 28.12% was of

Desmodus rotundus. This species feeds on birds, can feed on mammals, mostly medium or

large, facilitating the dissemination of viral spores among the community within the habitat, as

observed in the present study. These findings show the importance of epidemiological data on

the studied species due to the lack of studies involving species of neotropical chiroptera, and it

is not possible to establish comparative parameters for these animals.

Regarding the circulation of RVA in canines and birds, the prevalence was 53% and 29%,

respectively. Although in the Amazon region there are records of RVA, RVD, RVF and RVG

that infect birds [57–58] and RVD in migratory birds [59], all were detected by RT-PCR assays

differently from the present study which detected the RVA by RT-qPCR involving a variety of

animal species.

On the other hand, the prevalence in felines (16%) and pigs (22%) was lower, probably

because there are few animals of these species in the region, as well as few creations.

The study detected the presence of RVA in different species of animals both in areas near

the home and in areas located in fragments of forest, characterized as forest remnants, since

they were located in cities that suffered high environmental impacts due to vegetal extracti-

vism, pasture formation for cattle breeding, exploitation of natural resources, and direct

reflexes on the habitats of wild animals that can serve as virus sources, thus facilitating the dis-

persion of RVA among communities of coexisting animals.

It is worth emphasizing that these animals have a greater contact with the human popula-

tions of the studied areas since they cohabit with the humans in the region, besides having a

high flow of movement between the forest extracts and environments chosen for the present

study. However, it is noteworthy that only in the communities of Santa Bárbara and Viseu

were collected fecal specimens from asymptomatic humans for diarrhea and tested for RVA,

but all were negative. It is notorious yet, the existence of different levels of degradation in the

studied environments, considering the presented data. The fragmentation of the forest gener-

ates many consequences on the Amazonian biota, being able to alter the diversity and the
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composition of the animal communities in the fragments and even to interfere in the ecologi-

cal processes, without considering that the fragments of forest in the Amazon are influenced

by the climate, possibly facilitating the dispersion of pathogens by the environment, since the

wild animals detected in the present study are asymptomatic and have low viral load for RVA.

The occurrence of RVA in this population of animals may explain the possibility of disper-

sion of viral strains, since there is a proximity to the human population, besides the biological

characteristics of these species that may represent important sources for gastroenteric viruses,

along with the fact that all animals were asymptomatic for diarrhea.

Wild birds have unlimited flight capacity, were captured in an interface region between the

peridomicile and forest fragments and it is believed that this region has not been influenced by

anthropic activities such as those observed in the area of the present study. On the other hand,

the breeding method for poultry and canines close to homes and the forest ecosystem, as they

are created in the communities surveyed, probably facilitates direct contact with possible

sources of contamination, since in the areas the use of septic tanks is deficient and sometimes

non-existent, which may facilitate or even increase the risk of viral dispersion throughout the

environment.

The high rates of increase and the analysis of land use in the researched areas may be

important indicators of how these animals interact, since with deforestation, the populations

of wild animals seek refuge in nearby communities facilitating the dispersal of infectious

agents and the possible occurrence of carrier animals by direct contact or contamination of

the local environment.

To our knowledge, this is the first study in which a real-time PCR assay was applied for the

detection of RVA involving a wide variety of domestic and wild animals, facilitating practical

utility in epidemiological and molecular studies and assisting in a perspective in the elabora-

tion of sanitary control and monitoring, preventing possible outbreaks in the studied commu-

nities. The detection of positive animals was useful to monitor the infection of the agent in the

animal population and to provide an early warning signal to predict an impending epidemic

and a favorable risk for the human population, given the evidence of RVA circulation in the

different forest fragments.

In addition, the RT-qPCR assay may be a useful alternative for the differential diagnosis of

RV in possible coexisting mixed infections clinically indistinguishable such as those caused by

other viral strains that cause gastroenteritis such as: astrovirus, coronavirus, picobirnavirus,

calicivirus, among others as observed in the studies of Jing et al. [60] and Waruhiu et al. [61].

Diarrhea associated with RVA infections in pigs is an important cause of increased mortal-

ity and economic losses in Europe. The most prevalent genotypes isolated from feces of Bel-

gian diarrheal and non-diarrheal piglets in 2012 [62] demonstrate a wide range of

combinations of genotypes G / P including; G3P[6], G4P[6], G5P[6], G4P[7], G5P[7], G9P[7],

G9P[13] and G9P[23]. On the other hand, in the present study it was possible to detect only P

[6] genotype, since majority of samples was asymptomatic for diarrhea.

Finding shows that different P genotypes of RVA strains interact with distinct blood group

histological antigens (HBGA, ABOH, Lewis) and sialic acids via VP4 providing insight into

the regional prevalence and increased zoonotic potential of some RVA of origin swine [63].

The genotype P[6] was identified in piglets in Brazil [64] and in Italy and Japan resembling

genotype P[6] human [65, 66].

In the population of animals studied the zoonotic transmission can be frequent, since the

animals live in contact with humans and in precarious sanitary conditions. In Brazil, this geno-

type was described in animal and human populations in studies of Luchs et al. [32]; Honma

et al. [67]; Araújo et al.[68]; Mascarenhas et al.[69] and Lorenzetti et al. [70] such studies
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corroborate the importance of continuing to monitor genotypes to verify if uncommon strains

or new strains are emerging and can infect animal populations or inter-species transmissions.

Regarding the genotype P [4], itwas most detected in our samples in bats, dogs, swine and

feline. This genotype is not common in animals, being more detected in human and environ-

mental samples in various parts of the world and included our region [71]. It is important to

emphasize that the indicators of environmental contamination in Brazil are significant and

contribute to the possibility of human-animal transmission [71]. Such data need further inves-

tigation in later work to better characterize the interspecies transmission, since the occurrence

of enteric viruses in different matrices demonstrates the anthropogenic impact of the exposed

population around and points to the potential risk of infection by the possible exposure of

individuals susceptible. Our findings may be useful for tracking fecal contamination in the

environment using animals as possible sources thus minimizing the risk of infection by expo-

sure to susceptible individuals, in this case different animal species or even human

populations.

Conclusions and Significance

RVA were detected in wild and domestic animals using a RT-qPCR assay that analyzed sam-

ples that had low viral load for RVA. Although the samples are asymptomatic for diarrhea, it is

necessary to conduct strategies for the monitoring and control of the animals in the areas stud-

ied in the human population as well as in other species of animals, as well as the implementa-

tion of preventive measures aimed at future outbreaks in communities animals in the resident

population in these impacted areas. Therefore, the present study is unprecedented in the

region and in the country in relation to the research of RVA in wild animals. It is noteworthy

that, although the quality of the analyzed samples is characterized as low detectable viral load,

the technique presented a good analytical response in the detection of the source animals for

RVA, facilitating the selection of the samples for future genetic characterization tests.
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Project administration: Bruno de Cássio Veloso de Barros, Joana D’Arc Pereira Mascarenhas.

Rotavirus A in wild and domestic animals

PLOS ONE | https://doi.org/10.1371/journal.pone.0209005 December 18, 2018 14 / 18

https://doi.org/10.1371/journal.pone.0209005


Supervision: Joana D’Arc Pereira Mascarenhas.

Validation: Renato Silva Bandeira.
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gos hematófagos Desmodus rotundus em bovinos na região de São João da Boa Vista, Estado de São

Paulo.

46. Colwell R (2018) EstimateS: Biodiversity Estimation. Viceroycoloradoedu.Available:http://viceroy.

colorado.edu/estimates/. Accessed 24 January 2018.

47. Brower J, Zar J, Ende C (1998) Field and laboratory methods for general ecology. Boston, Mass.:

WCB McGraw-Hill.

48. INPE—Instituto Nacional de Pesquisas Espaciais (2018). Inpebr. Available: http://www.inpe.br.

Accessed 15 January 2018.

49. Espy M, Uhl J, Sloan L, Buckwalter S, Jones M, Vetter EA et al. (2006) Real-Time PCR in Clinical Micro-

biology: Applications for Routine Laboratory Testing. Clinical Microbiology Reviews 19: 595–595.

https://doi.org/10.1128/cmr.00022-06

50. Soltan M, Tsai Y, Lee P, Tsai C, Chang H, Wang HT et al. (2016) Comparison of electron microscopy,

ELISA, real time RT-PCR and insulated isothermal RT-PCR for the detection of Rotavirus group A

(RVA) in feces of different animal species. Journal of Virological Methods 235: 99–104. https://doi.org/

10.1016/j.jviromet.2016.05.006 PMID: 27180038

51. Esona M, Mijatovic-Rustempasic S, Conrardy C, Tong S, Kuzmin I, Agwanda B et al. (2010) Reassor-

tant Group A Rotavirus from Straw-colored Fruit Bat (Eidolon helvum). Emerging Infectious Diseases

16: 1844–1852. https://doi.org/10.3201/eid1612.101089 PMID: 21122212

52. Dacheux L, Cervantes-Gonzalez M, Guigon G, Thiberge J, Vandenbogaert M, Maufrais C et al. (2014)

A Preliminary Study of Viral Metagenomics of French Bat Species in Contact with Humans: Identifica-

tion of New Mammalian Viruses. PLoS ONE 9: e87194. https://doi.org/10.1371/journal.pone.0087194

PMID: 24489870

53. He B, Yang F, Yang W, Zhang Y, Feng Y, Zhou J et al. (2013) Characterization of a Novel G3P[3] Rota-

virus Isolated from a Lesser Horseshoe Bat: a Distant Relative of Feline/Canine Rotaviruses. Journal of

Virology 87: 12357–12366. https://doi.org/10.1128/JVI.02013-13 PMID: 24027312

54. Xia L, Fan Q, He B, Xu L, Zhang F, Hu T et al. (2014) The complete genome sequence of a G3P[10]

Chinese bat rotavirus suggests multiple bat rotavirus inter-host species transmission events. Infection,

Genetics and Evolution 28: 1–4. https://doi.org/10.1016/j.meegid.2014.09.005 PMID: 25218875

55. Yinda C, Zell R, Deboutte W, Zeller M, Conceição-Neto N, Heylen E et al. (2017) Highly diverse popula-

tion of Picornaviridae and other members of the Picornavirales, in Cameroonian fruit bats. BMC Geno-

mics 18. https://doi.org/10.1186/s12864-017-3632-7 PMID: 28335731

56. Barquez R, Perez S, Miller B, Diaz M (2018) Desmodus rotundus (Common Vampire Bat, Vampire

Bat). Iucnredlistorg. Available: http://www.iucnredlist.org/details/6510/0. Accessed 13 January 2018.

Rotavirus A in wild and domestic animals

PLOS ONE | https://doi.org/10.1371/journal.pone.0209005 December 18, 2018 17 / 18

https://doi.org/10.1080/01652176.2017.1346849
https://doi.org/10.1080/01652176.2017.1346849
http://www.ncbi.nlm.nih.gov/pubmed/28643555
https://doi.org/10.1586/14787210.2015.1089171
https://doi.org/10.1586/14787210.2015.1089171
http://www.ncbi.nlm.nih.gov/pubmed/26428261
https://doi.org/10.1016/j.meegid.2015.04.010
https://doi.org/10.1016/j.meegid.2015.04.010
http://www.ncbi.nlm.nih.gov/pubmed/25891280
https://doi.org/10.1016/j.jviromet.2008.08.004
http://www.ncbi.nlm.nih.gov/pubmed/18765254
https://doi.org/10.1016/j.jviromet.2016.07.007
http://www.ncbi.nlm.nih.gov/pubmed/27421626
https://doi.org/10.1127/0941-2948/2013/0507
https://doi.org/10.1127/0941-2948/2013/0507
http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes
http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes
https://doi.org/10.1590/1809-4392201505504
http://viceroy.colorado.edu/estimates/
http://viceroy.colorado.edu/estimates/
http://www.inpe.br
https://doi.org/10.1128/cmr.00022-06
https://doi.org/10.1016/j.jviromet.2016.05.006
https://doi.org/10.1016/j.jviromet.2016.05.006
http://www.ncbi.nlm.nih.gov/pubmed/27180038
https://doi.org/10.3201/eid1612.101089
http://www.ncbi.nlm.nih.gov/pubmed/21122212
https://doi.org/10.1371/journal.pone.0087194
http://www.ncbi.nlm.nih.gov/pubmed/24489870
https://doi.org/10.1128/JVI.02013-13
http://www.ncbi.nlm.nih.gov/pubmed/24027312
https://doi.org/10.1016/j.meegid.2014.09.005
http://www.ncbi.nlm.nih.gov/pubmed/25218875
https://doi.org/10.1186/s12864-017-3632-7
http://www.ncbi.nlm.nih.gov/pubmed/28335731
http://www.iucnredlist.org/details/6510/0
https://doi.org/10.1371/journal.pone.0209005


57. Bezerra D, da Silva R, Kaiano J, de Souza Oliveira D, Gabbay Y, Linhares AC et al. (2014) Detection,

epidemiology and characterization of VP6 and VP7 genes of group D rotavirus in broiler chickens.

Avian Pathology 43: 238–243. https://doi.org/10.1080/03079457.2014.913097 PMID: 24875189

58. Mascarenhas J, Bezerra D, Silva R, Silva M, Júnior E, Soares LS (2016) Detection of the VP6 gene of

group F and G rotaviruses in broiler chicken fecal samples from the Amazon region of Brazil. Archives

of Virology 161: 2263–2268. https://doi.org/10.1007/s00705-016-2882-z PMID: 27154557

59. Guerreiro A, Moraes C, Marinho A, Barros B, Bezerra D, Bandeira RS et al. (2018) Investigation of

Enteric Viruses in the Feces of Neotropical Migratory Birds Captured on the Coast of the State of Pará,
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